Скачать бесплатную работу можно по короткой ссылке. Ознакомится с содержимым можно ниже.
1.Введение…………………………………………………………………………3
2.Задание………………………………………………………………………. . ..4
3.Задача Коши……………………………………………………………………………9
4. Листинг программы прогонки………………………………………………..14
5.Задача Дирихле для уравнения Лапласа ……………………………………..16
6. Листинг программы …………………………………………………………..22
7. Вывод……………………………………………………………………………24
8.Литература……………………………………………………………………..25
Целью данной работе будет подробное решение задачи Коши аналитическим методом, а так же методом прогонки, предварительно запрограммированном в системе wxMaxima.
Хочется заметить что задача Коши очень похожа на обыкновенное решение дифференциальных уравнений, основная разница заключается в том, что в нашей задаче требуется отыскать частное решение, такое решение которое будет удовлетворять какому то конкретному условию поставленной нам задачи.
Одной из интереснейших задач теории дифференциальных уравнений (обыкновенных и с частными производными) является задача Коши, цель которой сводится к поиску правильного решения (интеграла) дифференциального уравнения, удовлетворяющего данным нам изначально так называемым начальным условиям (начальным данным).
Задача Коши в большинстве случаев предстаёт перед нами при пристальном рассмотрении анализа процессов, построенных на основании дифференциального закона эволюции и начальным состоянием (математическим выражением которых и являются уравнение и начальное условие).
Так же будет проведено исследование и решение задачи Дирихле для уравнения Лапласа на прямоугольнике методом конечных разностей. Для решения использовать явную трёхслойную схему «крест». Построить диаграмму распределения значений функции в виде линий уровня. В итоге мы получим пять линейных векторных уравнений с пятью неизвестными векторами.
Выполнено подробное решение задачи Коши аналитическим методом, а так же методом прогонки:
1. Постановка задачи и метод решения.
2. Аналитическое решение.
3. Результаты решения: массивы и и величина .
4. Листинг программы и окно результатов.
Выполнено подробное решение задачи Дирихле для уравнения Лапласа на прямоугольнике методом конечных разностей:
1. Постановка задачи и метод решения.
2. Исследование аппроксимации и устойчивости.
3. Листинг программы и окно результатов